Spontaneous U(1) Symmetry Breaking and Phase Transitions in Rotating Interacting Bose Gases

Main Article Content

Sun Wenming

Abstract

We investigate spontaneous U(1) symmetry breaking and the associated phase transitions in rotating interacting Bose gases. Using a theoretical framework that combines mean-field analysis with rotational dynamics, we analyze how rigid rotation modifies the condensate structure and critical behavior. The study identifies the emergence of Goldstone modes and clarifies their role in the low-energy excitation spectrum. The results provide insight into the interplay between symmetry, rotation, and many-body interactions, contributing to a deeper theoretical understanding of phase structures in Bose systems.We investigate spontaneous U(1) symmetry breaking and the associated phase transitions in rotating interacting Bose gases. Using a theoretical framework that combines mean-field analysis with rotational dynamics, we analyze how rigid rotation modifies the condensate structure, critical behavior, and low-energy excitation spectrum. We identify the emergence of Goldstone modes (massless rotons and massive phonons) in the symmetry-broken phase and clarify their role in mediating low-energy excitations—findings that remain robust at low momentum regardless of rotation. A key result is the angular velocity (Ω) dependence of the critical temperature (Tc) for U(1) phase transition, where Tc scales as Ω^(1/3), distinct from the Ω^(2/5) (nonrelativistic) and Ω^(1/4) (ultrarelativistic) scaling observed in noninteracting rotating Bose gases. Rotation also alters the temperature dependence of the thermodynamic potential minima, changing the characteristic factor from (1 - t) (t = T/Tc for nonrotating systems) to (1 - t³) for rotating gases. We further demonstrate that rotation preserves the second-order nature of the phase transition, while modifying the critical exponents and reducing the discontinuity in heat capacity with increasing Ω. Additionally, we define a σ meson dissociation temperature (Tdiss) characterized by mσ(Tdiss) = 2mπ(Tdiss), showing that Tdiss is always lower than Tc. Thermal mass corrections are shown to ensure the validity of Goldstone’s theorem in the rotating frame, even in the chiral limit. These results deepen our understanding of the interplay between symmetry, rotation, and many-body interactions, with implications for interpreting extreme conditions in heavy-ion collisions and compact astrophysical objects, while advancing the theoretical framework for phase structures in rotating Bose systems.

Downloads

Download data is not yet available.

Article Details

Wenming, S. (2025). Spontaneous U(1) Symmetry Breaking and Phase Transitions in Rotating Interacting Bose Gases. Annals of Mathematics and Physics, 8(6), 221–239. https://doi.org/10.17352/amp.000168
Research Articles

Copyright (c) 2025 Wenming S.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Yagi K, Hatsuda T, Miake Y. Quark-gluon plasma: From big bang to little bang. Cambridge: Cambridge University Press; 2005; 446.

Available from: https://inspirehep.net/literature/702469

Fukushima K, Hatsuda T. The phase diagram of dense QCD. Rep Prog Phys. 2011;74:014001.

Available from: https://doi.org/10.1088/0034-4885/74/1/014001 DOI: https://doi.org/10.1088/0034-4885/74/1/014001

Busza W, Rajagopal K, van der Schee W. Heavy ion collisions: The big picture, and the big questions. Annu Rev Nucl Part Sci. 2018;68:339. DOI: https://doi.org/10.1146/annurev-nucl-101917-020852

Available from: https://arxiv.org/abs/1802.04801

Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N. Mapping the phases of quantum chromodynamics with beam energy scan. Phys Rept. 2020;853:1. DOI: https://doi.org/10.1016/j.physrep.2020.01.005

Available from: https://inspirehep.net/literature/1737718

Aarts G, Aichelin J, Allton C, Athenodorou A, Bachtis D, Bonanno C, et al. Phase transitions in particle physics: Results and perspectives from lattice quantum chromodynamics. Prog Part Nucl Phys. 2023;133:104070. DOI: https://doi.org/10.1016/j.ppnp.2023.104070

Available from: https://arxiv.org/abs/2301.04382

Boyanovsky D, de Vega HJ, Schwarz DJ. Phase transitions in the early and the present universe. Annu Rev Nucl Part Sci. 2006;56:441. DOI: https://doi.org/10.1146/annurev.nucl.56.080805.140539

Available from: https://arxiv.org/abs/hep-ph/0602002

Laine M, Vuorinen A. Basics of thermal field theory. Lect Notes Phys. 2016;925:1. DOI: https://doi.org/10.1007/978-3-319-31933-9_1

Available from: https://arxiv.org/abs/1701.01554

Skokov V, Illarionov AY, Toneev V. Estimate of the magnetic field strength in heavy-ion collisions. Int J Mod Phys A. 2009;24:5925. DOI: https://doi.org/10.1142/S0217751X09047570

Available from: https://arxiv.org/abs/0907.1396

Shen D, Chen J, Huang XG, Ma YG, Tang A, Wang G. A review of intense electromagnetic fields in heavy-ion collisions: Theoretical predictions and experimental results. Research. 2025;8:0726. DOI: https://doi.org/10.34133/research.0726

Available from: https://spj.science.org/doi/10.34133/research.0726

Fayazbakhsh S, Sadooghi N. Phase diagram of hot magnetized two-flavor color superconducting quark matter. Phys Rev D. 2011;83:025026. DOI: https://doi.org/10.1103/PhysRevD.83.025026

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.025026

Fayazbakhsh S, Sadeghian S, Sadooghi N. Properties of neutral mesons in a hot and magnetized quark matter. Phys Rev D. 2012;86:085042. DOI: https://doi.org/10.1103/PhysRevD.86.085042

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.085042

Fukushima K. Extreme matter in electromagnetic fields and rotation. Prog Part Nucl Phys. 2019;107:167. DOI: https://doi.org/10.1016/j.ppnp.2019.04.001

Available from: https://arxiv.org/abs/1812.08886

Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S. Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys Rev C. 2017;95:054902. DOI: https://doi.org/10.1103/PhysRevC.95.054902

Available from: https://journals.aps.org/prc/abstract/10.1103/PhysRevC.95.054902

Becattini F, Lisa MA. Polarization and vorticity in the quark-gluon plasma. Annu Rev Nucl Part Sci. 2020;70:395-423. DOI: https://doi.org/10.1146/annurev-nucl-021920-095245

Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-nucl-021920-095245

Yamamoto A, Hirono Y. Lattice QCD in rotating frames. Phys Rev Lett. 2013;111:081601. DOI: https://doi.org/10.1103/PhysRevLett.111.081601

Available from: https://arxiv.org/abs/1303.6292

Chernodub MN, Gongyo S. Interacting fermions in rotation: Chiral symmetry restoration, moment of inertia and thermodynamics. JHEP. 2017;01:136. DOI: https://doi.org/10.1007/JHEP01(2017)136

Available from: https://arxiv.org/abs/1611.02598

Chernodub MN, Gongyo S. Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions. Phys Rev D. 2017;95:096006. DOI: https://doi.org/10.1103/PhysRevD.95.096006

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.096006

Ambruş VE, Winstanley E. Exact solutions in quantum field theory under rotation. 2019.

Available from: https://arxiv.org/abs/1908.10244

Sadooghi N, Tabatabaee Mehr SMA, Taghinavaz F. Inverse magnetorotational catalysis and the phase diagram of a rotating hot and magnetized quark matter. Phys Rev D. 2021;104:116022. DOI: https://doi.org/10.1103/PhysRevD.104.116022

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.116022

Sun F, Shao J, Wen R, Xu K, Huang M. Chiral phase transition and spin alignment of vector mesons in the polarized-Polyakov-loop Nambu-Jona-Lasinio model under rotation. Phys Rev D. 2024;109:116017. DOI: https://doi.org/10.1103/PhysRevD.109.116017

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.116017

Kharzeev DE, Liao J, Voloshin SA, Wang G. Chiral magnetic and vortical effects in high-energy nuclear collisions: a status report. Prog Part Nucl Phys. 2016;88:1-28.

Available from: https://doi.org/10.1016/j.ppnp.2016.01.001 DOI: https://doi.org/10.1016/j.ppnp.2016.01.001

Mameda K, Yamamoto A. Magnetism and rotation in relativistic field theory. PTEP. 2016;2016:093B05. DOI: https://doi.org/10.1093/ptep/ptw128

Available from: https://academic.oup.com/ptep/article/2016/9/093B05/2468923

Chen HL, Fukushima K, Huang XG, Mameda K. Analogy between rotation and density for Dirac fermions in a magnetic field. Phys Rev D. 2016;93:104052. DOI: https://doi.org/10.1103/PhysRevD.93.104052

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.104052

Chernodub MN. Inhomogeneous confining-deconfining phases in rotating plasmas. Phys Rev D. 2021;103:054027. DOI: https://doi.org/10.1103/PhysRevD.103.054027

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.054027

Braguta VV, Chernodub MN, Roenko AA, Sychev DA. Negative moment of inertia and rotational instability of gluon plasma. Phys Lett B. 2024;852:138604.

Available from: https://doi.org/10.1016/j.physletb.2024.138604 DOI: https://doi.org/10.1016/j.physletb.2024.138604

Braguta VV, Chernodub MN, Kudrov IE, Roenko AA, Sychev DA. Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate. Phys Rev D. 2024;110:014511. DOI: https://doi.org/10.1103/PhysRevD.110.014511

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.014511

Ambruş VE, Chernodub MN. Rigidly rotating scalar fields: Between real divergence and imaginary fractalization. Phys Rev D. 2023;108:085016. DOI: https://doi.org/10.1103/PhysRevD.108.085016

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.085016

Siri E, Sadooghi N. Thermodynamic properties of a relativistic Bose gas under rigid rotation. Phys Rev D. 2024;110:036016. DOI: https://doi.org/10.1103/PhysRevD.110.036016

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.036016

Siri E, Sadooghi N. Boson propagator under rigid rotation. Trans Theor Math Phys. 2024;1:105.

Available from: https://www.arxiv.org/abs/2408.06194

Siri E, Sadooghi N. Bose-Einstein condensation in a rigidly rotating relativistic boson gas. Phys Rev D. 2025;111:036011. DOI: https://doi.org/10.1103/PhysRevD.111.036011

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.036011

Kuboniwa R, Mameda K. Finite-temperature perturbation theory of rotating scalar fields. 2025.

Available from: https://arxiv.org/abs/2504.04712

Voskresensky DN. Charged pion vortices in rotating systems. Phys Part Nucl Lett. 2024;21:1036. DOI: https://doi.org/10.1134/S1547477124701553

Available from: https://inspirehep.net/literature/2781242

Voskresensky DN. Pion condensation at rotation in magnetic field, electric, and scalar potential wells. Phys Rev D. 2025;111:036022. DOI: https://doi.org/10.1103/PhysRevD.111.036022

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.036022

Bordag M, Pirozhenko IG. Casimir effect for scalar field rotating on a disk. EPL. 2025;150:52001. DOI: https://doi.org/10.1209/0295-5075/add806

Available from: https://arxiv.org/abs/2505.14093

Bordag M, Voskresensky DN. Generation of a scalar vortex in a rotational frame. 2025. DOI: https://doi.org/10.1103/y2lc-27pn

Available from: https://journals.aps.org/prd/abstract/10.1103/y2lc-27pn

Singha P, Ambruş VE, Chernodub MN. Inhibition of the splitting of the chiral and deconfinement transition due to rotation in QCD: The phase diagram of the linear sigma model coupled to Polyakov loops. Phys Rev D. 2024;110:094053. DOI: https://doi.org/10.1103/PhysRevD.110.094053

Available from: https://arxiv.org/abs/2407.07828

Hernández LA, Zamora R. Vortical effects and the critical end point in the linear sigma model coupled to quark. Phys Rev D. 2025;111:036003. DOI: https://doi.org/10.1103/PhysRevD.111.036003

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.036003

Morales-Tejera S, Ambruş VE, Chernodub MN. Firewall boundaries and mixed phases of rotating quark matter in linear sigma model. 2025. DOI: https://doi.org/10.1103/4zrn-wgrg

Available from: https://journals.aps.org/prd/abstract/10.1103/4zrn-wgrg

Singha P, Busuioc S, Ambruş VE, Chernodub MN. Linear sigma model with quarks and Polyakov loop in rotation: Phase diagrams, Tolman-Ehrenfest law and mechanical properties. Phys Rev D. 2025;112:094031. DOI: https://doi.org/10.1103/knn8-sv3k

Available from: https://journals.aps.org/prd/abstract/10.1103/knn8-sv3k

Kapusta JI, Gale C. Finite-temperature field theory: Principles and applications. 2nd ed. Cambridge: Cambridge University Press; 2007. DOI: https://doi.org/10.1017/CBO9780511535130

Available from: https://library.oapen.org/bitstream/handle/20.500.12657/64016/9781009401968.pdf?sequence=1&isAllowed=y

Schmitt A. Dense matter in compact stars: A pedagogical introduction. Lect Notes Phys. 2010;811:1. DOI: https://doi.org/10.1007/978-3-642-12866-0_1

Available from: https://arxiv.org/abs/1001.3294

Schmitt A. Introduction to superfluidity: Field-theoretical approach and applications. Lect Notes Phys. 2015;888:1. DOI: https://doi.org/10.1007/978-3-319-07947-9

Available from: http://ndl.ethernet.edu.et/bitstream/123456789/73852/1/72.pdf.pdf

Carrington ME. The effective potential at finite temperature in the standard model. Phys Rev D. 1992;45:2933. DOI: https://doi.org/10.1103/PhysRevD.45.2933

Available from: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.45.2933

Anchishkin D, Gnatovskyy V, Zhuravel D, Mishustin I, Stoecker H. Four types of phase transitions in interacting boson (meson) matter at high temperatures. J Subatomic Part Cosmol. 2025;4:100073. DOI: https://doi.org/10.1016/j.jspc.2025.100073

Available from: https://arxiv.org/abs/2506.21736

Quack E, Zhuang P, Kalinovsky Y, Klevansky SP, Hufner J. π–π scattering lengths at finite temperature. Phys Lett B. 1995;348:1. DOI: https://doi.org/10.1016/0370-2693(95)00128-8

Available from: https://arxiv.org/abs/hep-ph/9410243

Buballa M, Heckmann K, Wambach J. Chiral restoration effects on the shear viscosity of a pion gas. Prog Part Nucl Phys. 2012;67:348. DOI: https://doi.org/10.1016/j.ppnp.2011.12.042

(No URL provided.)

Chernodub M, Wilczek F. Enhanced condensation through rotation. 2025;1.

Available from: https://arxiv.org/abs/2501.01734

Alford MG, Braby M, Schmitt A. Critical temperature for kaon condensation in color-flavor locked quark matter. J Phys G. 2008;35:025002. DOI: https://doi.org/10.1088/0954-3899/35/2/025002

Available from: https://arxiv.org/abs/0707.2389