Optical Solitons Solutions in Birefringent Fibers with Perturbed Generalized Gerdjikov–Ivanov Model using the Addendum to Sub-ODE Method
Main Article Content
Abstract
For the perturbed generalized Gerdjikov-Ivanov (GI) model in polarization-preserving fibers, we study the propagation properties of optical solitons in birefringent fibers. A complementary and effective integration method, namely an addendum to the Sub-ODE method, is used to analytically handle the coupled (GI) equations once they have been reduced to tractable forms via the use of an appropriate similarity transformation. By using this method, a wide range of accurate closed-form solutions may be created, such as bright, dark, kink-shaped, solitary, bell-shaped, straddled, Jacobi elliptic and Weierstrass elliptic doubly periodic waveforms. We carefully construct explicit parametric constraints regulating the existence of each class. The findings give important information for developing sophisticated nonlinear fibre-optic systems, engineering photonic crystal structures and enhancing the propagation control of ultrashort optical pulses in high-capacity communication networks, in addition to enhancing the analytical solution space of the (GI) model.
OCIS: 060.2310; 060.4510; 060.5530; 190.3270; 190.4370.
Downloads
Article Details
Copyright (c) 2025 Zayed EME, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Kudryashov NA, Lavrova SF, Nifontov DR. Bifurcations of phase portraits, exact solutions and conservation laws of the generalized Gerdjikov–Ivanov model. Mathematics. 2023;11:4760. Available from: https://www.mdpi.com/2227-7390/11/23/4760 DOI: https://doi.org/10.3390/math11234760
Biswas A, Ekici M, Sonmezoglu A, Arshed S, Belic M. Optical soliton perturbation with full nonlinearity by extended trial function method. Optical and Quantum Electronics. 2018;50:449. Available from: https://link.springer.com/article/10.1007/s11082-018-1701-z DOI: https://doi.org/10.1007/s11082-018-1701-z
Biswas A, Mirzazadeh M, Milovic D, Zhou Q, Zerrad E, Belic M. Singular and topological solitons in optical metamaterials by Kudryashov’s method and G/G-expansion scheme. Journal of Computational and Theoretical Nanoscience. 2015;12(12):5630–5635. Available from: https://www.ingentaconnect.com/content/asp/jctn/2015/00000012/00000012/art00060 DOI: https://doi.org/10.1166/jctn.2015.4695
Bulut H, Pandir Y, Demiray ST. Exact solutions of time-fractional KdV equations by using generalized Kudryashov method. International Journal of Modeling and Optimization. 2014;4(4):315–320. Available from: https://www.researchgate.net/publication/264196391_Exact_Solutions_of_Time-Fractional_KdV_Equations_by_Using_Generalized_Kudryashov_Method DOI: https://doi.org/10.7763/IJMO.2014.V4.392
Bulut H, Sulaiman TA, Demirdag B. Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations. Nonlinear Dynamics. 2017;91(3):1–7. Available from: https://link.springer.com/article/10.1007/s11071-017-3997-9 DOI: https://doi.org/10.1007/s11071-017-3997-9
Demiray ST, Bulut H. Generalized Kudryashov method for nonlinear fractional double sinh-Poisson equation. Journal of Nonlinear Sciences and Applications. 2016;9:1349–1355. Available from: https://jnsa.org/index.php/jnsa/article/view/464 DOI: https://doi.org/10.22436/jnsa.009.03.58
Demiray ST, Pandir Y, Bulut H. Generalized Kudryashov method for time-fractional differential equations. Abstract and Applied Analysis. 2014;2014:901540. Available from: https://www.hindawi.com/journals/aaa/2014/901540/ DOI: https://doi.org/10.1155/2014/901540
Ege SM, Misirli E. The modified Kudryashov method for solving some fractional-order nonlinear equations. Advances in Difference Equations. 2014;2014:135. Available from: https://link.springer.com/article/10.1186/1687-1847-2014-135 DOI: https://doi.org/10.1186/1687-1847-2014-135
El-Borai MM, El-Owaidy HM, Ahmed HM, Arnous AH, Moshokoa SP, Biswas A, Belic M. Topological and singular soliton to Kundu–Eckhaus equation with extended Kudryashov’s method. Optik. 2017;128:57–62. Available from: https://www.sciencedirect.com/science/article/pii/S0030402616310785 DOI: https://doi.org/10.1016/j.ijleo.2016.10.011
Hosseini K, Ansari R. New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves in Random and Complex Media. 2017;27:628–636. Available from: https://www.tandfonline.com/doi/full/10.1080/17455030.2017.1296983 DOI: https://doi.org/10.1080/17455030.2017.1296983
Hosseini K, Ayati Z, Ansari R. New exact solutions of the Tzitzeica type equations arising in nonlinear optics using a modified version of the improved tan(Φ(ξ)/2)-expansion method. Optical and Quantum Electronics. 2017;49(8):273. Available from: https://link.springer.com/article/10.1007/s11082-017-1094-4 DOI: https://doi.org/10.1007/s11082-017-1094-4
Hosseini K, Zabihi A, Samadani F, Ansari R. New explicit exact solutions of the unstable nonlinear Schrödinger’s equation using the expa and hyperbolic function methods. Optical and Quantum Electronics. 2018;50(2):82. Available from: https://link.springer.com/article/10.1007/s11082-018-1350-2 DOI: https://doi.org/10.1007/s11082-018-1350-2
Kudryashov NA, Loguinova NB. Extended simplest equation method for nonlinear differential equations. Applied Mathematics and Computation. 2008;205(1):396–402. Available from: https://www.sciencedirect.com/science/article/pii/S0096300308006854 DOI: https://doi.org/10.1016/j.amc.2008.08.019
Mirzazadeh M, Alqahtani RT, Biswas A. Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati–Bernoulli sub-ODE method and Kudryashov’s scheme. Optik. 2017;145:74–78. Available from: https://www.sciencedirect.com/science/article/pii/S0030402617307341 DOI: https://doi.org/10.1016/j.ijleo.2017.07.011
Mirzazadeh M, Eslami M, Biswas A. Dispersive optical solitons by Kudryashov’s method. Optik. 2014;125(23):6874–6880. Available from: https://www.sciencedirect.com/science/article/pii/S0030402614001419 DOI: https://doi.org/10.1016/j.ijleo.2014.02.044
Sulaiman TA, Akturk T, Bulut H, Baskonus HM. Investigation of various soliton solutions to the Heisenberg ferromagnetic spin chain equation. Journal of Electromagnetic Waves and Applications. 2017;31:1–13. Available from: https://www.tandfonline.com/doi/full/10.1080/09205071.2017.1417919
Zayed EME, Alngar MEM. Application of newly proposed sub-ODE method to locate chirped optical solitons to Triki–Biswas equation. Optik. 2020;207:164360. Available from: https://www.sciencedirect.com/science/article/pii/S0030402620300655 DOI: https://doi.org/10.1016/j.ijleo.2020.164360
Li ZL. Periodic wave solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms. Zeitschrift für Naturforschung A. 2010;65a:649–657. Available from: http://www.znaturforsch.com/s65a/s65a0649.pdf DOI: https://doi.org/10.1515/zna-2010-8-905
Zayed EME, Gepreel KHA, Alngar MEM, Biswas A, Dakova A, Ekici M, Alshehri HM, Belic MR. Cubic–quartic solitons for twin-core couplers in optical metamaterials. Optik. 2021;245:167632. Available from: https://www.sciencedirect.com/science/article/pii/S0030402621007789 DOI: https://doi.org/10.1016/j.ijleo.2021.167632
Chen Y, Yan Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos, Solitons & Fractals. 2006;29:948–964. Available from: https://www.sciencedirect.com/science/article/pii/S0960077905003464 DOI: https://doi.org/10.1016/j.chaos.2005.08.071
Zhen-Ya Y. New Weierstrass semi-rational expansion method to doubly periodic solutions of soliton equations. Communications in Theoretical Physics. 2005;43:391–396. Available from: https://iopscience.iop.org/article/10.1088/0253-6102/43/3/003 DOI: https://doi.org/10.1088/0253-6102/43/3/003