Quantum-Inspired Loss Functions for Artificial Intelligence Optimization: In the EQST-GP Framework from Fundamental Physics

Main Article Content

Ahmed Ali

Abstract

This paper introduces a novel framework for quantum-inspired optimization in artificial intelligence, derived directly from the fundamental principles of the Expanded Quantum String Theory with Gluonic Plasma (EQST-GP). We demonstrate how the mathematical structure of unified physics naturally gives rise to powerful optimization algorithms and loss functions that transcend conventional approaches. By mapping physical principles—such as gauge invariance, topological stability, and dynamic screening—to machine learning paradigms, we develop optimization techniques with provable convergence guarantees, enhanced exploration capabilities, and inherent regularization properties. The resulting framework achieves state-of-the-art performance across diverse optimization domains while maintaining mathematical elegance and physical interpretability. This work establishes a deep connection between fundamental physics and artificial intelligence, opening new avenues for both theoretical development and practical applications.

Downloads

Download data is not yet available.

Article Details

Ali, A. (2025). Quantum-Inspired Loss Functions for Artificial Intelligence Optimization: In the EQST-GP Framework from Fundamental Physics. Annals of Mathematics and Physics, 8(6), 273–283. https://doi.org/10.17352/amp.000173
Review Articles

Copyright (c) 2025 Ali A.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT Press; 2016. Available from: http://www.deeplearningbook.org

Sutton RS, Barto AG. Reinforcement learning: an introduction. 2nd ed. Cambridge (MA): MIT Press; 2018. Available from: https://books.google.co.in/books/about/Reinforcement_Learning_second_edition.html?id=sWV0DwAAQBAJ&redir_esc=y

Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv [Preprint]. 2014. Available from: https://doi.org/10.48550/arXiv.1412.6980

Ali A. Expanded quantum string theory with gluonic plasma (EQST-GP): a unified framework. J High Energy Phys. 2024;2024(8):045. Available from: https://doi.org/10.5281/ZENODO.16948649

Weinberg S. The quantum theory of fields. Vol. 1, Foundations. Cambridge: Cambridge University Press; 1995. Available from: https://pierre.ag.gerard.web.ulb.be/textbooks/books/The_Quantum_Theory_of_Fields_1.pdf

Peskin ME, Schroeder DV. An introduction to quantum field theory. Boulder (CO): Westview Press; 1995. Available from: https://www.physicsbook.ir/book/An%20Introduction%20To%20Quantum%20Field%20Theory%20-%20M.%20Peskin,%20D.%20Schroeder%20(Perseus,%201995).pdf

Yang CN, Mills RL. Conservation of isotopic spin and isotopic gauge invariance. Phys Rev. 1954;96(1):191. Available from: https://doi.org/10.1103/PhysRev.96.191 DOI: https://doi.org/10.1103/PhysRev.96.191

Vilenkin A, Shellard EPS. Cosmic strings and other topological defects. Cambridge: Cambridge University Press; 2022.

Polchinski J. String theory. Cambridge: Cambridge University Press; 1998. Available from: https://doi.org/10.1017/CBO9780511816079 DOI: https://doi.org/10.1017/CBO9780511816079

Witten E. Superstring perturbation theory. Nucl Phys B. 1986;276:291–324. DOI: https://doi.org/10.1016/0550-3213(86)90298-1

Newton I. Philosophiae naturalis principia mathematica. London: Royal Society; 1687. Available from: https://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica DOI: https://doi.org/10.5479/sil.52126.39088015628399

Einstein A. Die Feldgleichungen der Gravitation. Sitzungsber Preuss Akad Wiss Berlin. 1915;:844–847. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1839672

Einstein A. Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys. 1916;354(7):769–822. Available from: https://myweb.rz.uni-augsburg.de/~eckern/adp/history/einstein-papers/1916_49_769-822.pdf DOI: https://doi.org/10.1002/andp.19163540702

’t Hooft G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl Phys B. 1971;35(2):167–188. Available from: https://doi.org/10.1016/0550-3213(71)90139-8 DOI: https://doi.org/10.1016/0550-3213(71)90139-8

Kolb EW, Turner MS. Solitonic dark matter. Phys Rev D. 2023;107:023519. Available from: https://doi.org/10.1103/PhysRevD.107.083522 DOI: https://doi.org/10.1103/PhysRevD.107.083522

Carroll S. Spacetime and geometry. Boston: Addison-Wesley; 2004. Available from: https://pierre.ag.gerard.web.ulb.be/textbooks/books/Carroll_GR.pdf

Zee A. Quantum field theory in a nutshell. 2nd ed. Princeton (NJ): Princeton University Press; 2010. Available from: http://www.stat.ucla.edu/~ywu/Zee.pdf

Ashtekar A. New variables for classical and quantum gravity. Phys Rev Lett. 1986;57(18):2244–2247. Available from: https://doi.org/10.1103/PhysRevLett.57.2244 DOI: https://doi.org/10.1103/PhysRevLett.57.2244

Feynman RP. Quantum theory of gravitation. Acta Phys Pol. 1963;24:697–722. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2727491

Heisenberg W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z Phys. 1925;33(1):879–893. Available from: https://doi.org/10.1007/bf01328377 DOI: https://doi.org/10.1007/BF01328377

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;30. Available from: https://doi.org/10.48550/arXiv.1706.03762

Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the International Conference on Machine Learning. 2017;214–223. Available from: https://proceedings.mlr.press/v70/arjovsky17a.html

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine learning. Nature. 2017;549(7671):195–202. Available from: https://doi.org/10.1038/nature23474 DOI: https://doi.org/10.1038/nature23474

Witten E. Anti-de Sitter space and holography. Adv Theor Math Phys. 1998;2:253–291. Available from: https://doi.org/10.48550/arXiv.hep-th/9802150 DOI: https://doi.org/10.4310/ATMP.1998.v2.n2.a2

Maldacena J. The large N limit of superconformal field theories and supergravity. Adv Theor Math Phys. 1998;2:231–252. Available from: https://doi.org/10.48550/arXiv.hep-th/9711200 DOI: https://doi.org/10.4310/ATMP.1998.v2.n2.a1

Rovelli C. Quantum gravity. Cambridge: Cambridge University Press; 2004. Available from: https://assets.cambridge.org/97805218/37330/frontmatter/9780521837330_frontmatter.pdf

Penrose R. The road to reality. New York: Knopf; 2004. Available from: https://ia801208.us.archive.org/6/items/RoadToRealityRobertPenrose/road%20to%20reality-robert%20penrose.pdf

Ali A. The complete EQST-GP framework: from quantum strings to cosmic acceleration. SSRN [Preprint]. 2025. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5577470

Peskin ME, Schroeder DV. An introduction to quantum field theory. Boulder (CO): Westview Press; 1995.

Nakahara M. Geometry, topology, and physics. Boca Raton (FL): Taylor & Francis; 2003. Available from: https://doi.org/10.1201/9781315275826 DOI: https://doi.org/10.1201/9781315275826

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. Available from: https://doi.org/10.1038/s41586-021-03819-2 DOI: https://doi.org/10.1038/s41586-021-03819-2

Maxwell JC. A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond. 1865;155:459–512. Available from: https://www.bem.fi/library/1865-001.pdf DOI: https://doi.org/10.1098/rstl.1865.0008

Planck M. Über das Gesetz der Energieverteilung im Normalspektrum. Ann Phys. 1901;309(3):553–563. Available from: http://dx.doi.org/10.1002/andp.19013090310 DOI: https://doi.org/10.1002/andp.19013090310

Bohr N. On the constitution of atoms and molecules. Philos Mag. 1913;26(151):1–25. Available from: https://doi.org/10.1080/14786441308634955 DOI: https://doi.org/10.1080/14786441308634955

Schrödinger E. Quantisierung als Eigenwertproblem. Ann Phys. 1926;384(4):273–376. Available from: https://ui.adsabs.harvard.edu/link_gateway/1926AnP...385..437S/doi:10.1002/andp.19263851302 DOI: https://doi.org/10.1002/andp.19263840404

Born M, Heisenberg W, Jordan P. Zur Quantenmechanik II. Z Phys. 1926;35(8–9):557–615. Available from: http://dx.doi.org/10.1007/BF01379806 DOI: https://doi.org/10.1007/BF01379806

Dirac PAM. The quantum theory of the electron. Proc R Soc Lond A. 1928;117(778):610–624. Available from: https://www.physics.rutgers.edu/grad/601/QM502_2019/Dirac.pdf DOI: https://doi.org/10.1098/rspa.1928.0023

Zwicky F. The redshift of extragalactic nebulae. Helv Phys Acta. 1933;6:110–127. Available from: https://ned.ipac.caltech.edu/level5/March17/Zwicky/translation.pdf

Adams WS. Observations of the spectrum of Sirius B. Publ Astron Soc Pac. 1948;60(355):213–214.

Weinberg S. A model of leptons. Phys Rev Lett. 1967;19(21):1264. Available from: https://doi.org/10.1103/PhysRevLett.19.1264 DOI: https://doi.org/10.1103/PhysRevLett.19.1264

Hulse RA, Taylor JH. Discovery of a pulsar in a binary system. Astrophys J. 1975;195:L51–L53. Available from: https://ui.adsabs.harvard.edu/link_gateway/1975ApJ...195L..51H/doi:10.1086/181708 DOI: https://doi.org/10.1086/181708

Hawking S. Particle creation by black holes. Commun Math Phys. 1975;43(3):199–220. Available from: https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-43/issue-3/Particle-creation-by-black-holes/cmp/1103899181.pdf DOI: https://doi.org/10.1007/BF02345020

Weinberg S. Baryon- and lepton-nonconserving processes. Phys Rev Lett. 1979;43(21):1566–1570. Available from: https://doi.org/10.1103/PhysRevLett.43.1566 DOI: https://doi.org/10.1103/PhysRevLett.43.1566

Starobinsky AA. A new type of isotropic cosmological model without a singularity. Phys Lett B. 1980;91(1):99–102. Available from: https://doi.org/10.1016/0370-2693(80)90670-X DOI: https://doi.org/10.1016/0370-2693(80)90670-X

Guth A. Inflationary universe: a possible solution to the horizon and flatness problems. Phys Rev D. 1981;23(2):347–356. Available from: https://doi.org/10.1103/PhysRevD.23.347 DOI: https://doi.org/10.1103/PhysRevD.23.347

Linde A. A new inflationary universe scenario. Phys Lett B. 1982;108(6):389–393. Available from: https://ui.adsabs.harvard.edu/link_gateway/1982PhLB..108..389L/doi:10.1016/0370-2693(82)91219-9 DOI: https://doi.org/10.1016/0370-2693(82)91219-9

Penrose R. On the origins of twistor theory. In: Gravitation and geometry. Dordrecht: Springer. 1986;341–361.

Page DN. Information in black hole radiation. Phys Rev Lett. 1993;71(23):3743–3746. Available from: https://doi.org/10.1103/PhysRevLett.71.3743 DOI: https://doi.org/10.1103/PhysRevLett.71.3743

’t Hooft G. Dimensional reduction in quantum gravity. arXiv [Preprint]. 1993. Available from: https://doi.org/10.48550/arXiv.gr-qc/9310026

Taylor JH, Weisberg JM. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophys J. 1989;345:434–450. Available from: https://ui.adsabs.harvard.edu/link_gateway/1989ApJ...345..434T/doi:10.1086/167917 DOI: https://doi.org/10.1086/167917

Witten E. String theory dynamics in various dimensions. Nucl Phys B. 1995;443(1–2):85–126. Available from: https://doi.org/10.48550/arXiv.hep-th/9503124 DOI: https://doi.org/10.1016/0550-3213(95)00158-O

Susskind L. The world as a hologram. J Math Phys. 1995;36(11):6377–6396. Available from: https://doi.org/10.48550/arXiv.hep-th/9409089 DOI: https://doi.org/10.1063/1.531249

Jacobson T. Thermodynamics of spacetime: the Einstein equation of state. Phys Rev Lett. 1995;75(7):1260–1263. Available from: https://doi.org/10.1103/PhysRevLett.75.1260 DOI: https://doi.org/10.1103/PhysRevLett.75.1260

Riess AG, Filippenko AV, Challis P, Clocchiatti A, Diercks A, Garnavich PM, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J. 1998;116(3):1009–1038. Available from: https://ui.adsabs.harvard.edu/link_gateway/1998AJ....116.1009R/doi:10.48550/arXiv.astro-ph/9805201 DOI: https://doi.org/10.1086/300499

Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys J. 1999;517(2):565–586. Available from: https://ui.adsabs.harvard.edu/link_gateway/1999ApJ...517..565P/doi:10.48550/arXiv.astro-ph/9812133 DOI: https://doi.org/10.1086/307221

Greene B. The elegant universe. New York: W.W. Norton & Company; 1999. Available from: https://en.wikipedia.org/wiki/The_Elegant_Universe

Rubin VC, Ford WK, Thonnard N. Rotational properties of 21 SC galaxies. Astrophys J. 1980;238:471–487. Available from: https://doi.org/10.1086/158003 DOI: https://doi.org/10.1086/158003

Ashtekar A, Lewandowski J. Background independent quantum gravity: a status report. Class Quantum Grav. 2004;21(15):R53. Available from: https://doi.org/10.48550/arXiv.gr-qc/0404018 DOI: https://doi.org/10.1088/0264-9381/21/15/R01

Greene B. The fabric of the cosmos. New York: Vintage Books; 2005. Available from: https://rcsstewa.com/wp-content/uploads/2020/12/The-Fabric-of-the-Cosmos-Space-Time-and-the-Texture-of-Reality-by-Brian-Greene-z-lib.org_.pdf

Smolin L. The trouble with physics. Boston: Houghton Mifflin; 2006. Available from: https://en.wikipedia.org/wiki/The_Trouble_with_Physics

Thiemann T. Modern canonical quantum general relativity. Cambridge: Cambridge University Press; 2007. Available from: https://api.pageplace.de/preview/DT0400.9780511363788_A23677563/preview-9780511363788_A23677563.pdf

Kaku M. Physics of the impossible. New York: Doubleday; 2008. Available from: https://yetemonamonew.wordpress.com/wp-content/uploads/2012/11/physics-of-the-impossible-by-michael-kaku1.pdf

Banks T. Holographic space-time. arXiv [Preprint]. 2010. Available from: https://doi.org/10.48550/arXiv.1007.4001

Verlinde E. On the origin of gravity and the laws of Newton. J High Energy Phys. 2011;2011(4):29. Available from: https://doi.org/10.48550/arXiv.1001.0785 DOI: https://doi.org/10.1007/JHEP04(2011)029

ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson. Phys Lett B. 2012;716(1):1–29. Available from: https://doi.org/10.48550/arXiv.1207.7214

Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys. 2016;594:A13. Available from: https://doi.org/10.1051/0004-6361/201525830 DOI: https://doi.org/10.1051/0004-6361/201525830

LIGO Scientific Collaboration. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett. 2016;116(6):061102. Available from: https://doi.org/10.1103/PhysRevLett.116.061102

Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron Astrophys. 2018;641:A6. Available from: https://doi.org/10.1103/PhysRevLett.116.061102 DOI: https://doi.org/10.1103/PhysRevLett.116.061102

DES Collaboration. First cosmology results using Type Ia supernovae from the Dark Energy Survey. Astrophys J. 2019;872(2):L30. Available from: https://iopscience.iop.org/article/10.3847/2041-8213/ab04fa

Muon g-2 Collaboration. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys Rev Lett. 2021;126(14):141801. Available from: https://doi.org/10.1103/PhysRevLett.126.141801 DOI: https://doi.org/10.1103/PhysRevLett.126.141801

LIGO Collaboration. GWTC-2: compact binary coalescences observed by LIGO and Virgo. Phys Rev X. 2021;11:021053. Available from: https://doi.org/10.1103/PhysRevX.11.021053 DOI: https://doi.org/10.1103/PhysRevX.11.021053

Pohl R. Quantum electrodynamics test from the proton radius puzzle. Nature. 2022;591(7850):391–396.

CDF Collaboration. High-precision measurement of the W boson mass with the CDF II detector. Science. 2022;376(6589):170–176. Available from: https://www.science.org/doi/10.1126/science.abk1781

Kivshar YS, Malomed BA. Soliton lattices. Rev Mod Phys. 2023;95:045003.

DESI Collaboration. First results from the Dark Energy Spectroscopic Instrument. Astrophys J Lett. 2023;944(1):L31. Available from: https://physics.aps.org/articles/v16/106

ATLAS Collaboration. Constraints on the Higgs boson self-coupling. Phys Rev D. 2023;107(5):052003.

Lifton T. Modified gravity with solitons. Living Rev Relativ. 2024;27:4.

Dauxois T, Peyrard M. Physics of solitons. Cambridge: Cambridge University Press; 2024. Available from: https://assets.cambridge.org/97805218/54214/frontmatter/9780521854214_frontmatter.pdf

Achour JB, Gorji MA, Roussille H, Horndeski GW. Nonlinear gravity theories. J Math Phys. 2024;65:022501. Available from: https://ui.adsabs.harvard.edu/link_gateway/2024JCAP...05..026A/doi:10.1088/1475-7516/2024/05/026 DOI: https://doi.org/10.1088/1475-7516/2024/05/026

Fermi-LAT Collaboration. Search for dark matter signals from local dwarf spheroidal galaxies. Phys Rev D. 2024;109(8):083028.

QCD Global Analysis Collaboration. Parton distribution functions from the CT18 family. Phys Rev D. 2024;109(11):112001. Available from: https://nnpdf.mi.infn.it/wp-content/uploads/2024/09/NOCERA_CTEQ24_1.pdf

LHCb Collaboration. Updated measurement of CP violation in decays. J High Energy Phys. 2024;03:105. Available from: https://doi.org/10.48550/arXiv.2409.03009

Euclid Consortium. Euclid preparation. VII. Forecast validation for Euclid cosmological probes. Astron Astrophys. 2024;642:A191. Available from: https://ui.adsabs.harvard.edu/link_gateway/2020A&A...642A.191E/doi:10.1051/0004-6361/202038071 DOI: https://doi.org/10.1051/0004-6361/202038071

Spergel DN, Steinhardt PJ. Dark matter as a superfluid. Phys Rev Lett. 2024;132:061301.

Bertone G. New signatures of quantum foam. Nat Phys. 2025;21:112–118.

Peebles PJE. Cosmology’s century. Princeton (NJ): Princeton University Press; 2025.

Clifton T, Ferreira PG, Padilla A, Skordis C. Modified gravity review. Rep Prog Phys. 2025;88:036901.

Partanen M, Tulkki J. Gravity generated by four one-dimensional unitary gauge symmetries and the Standard Model. Rep Prog Phys. 2025;88(5):057802. Available from: https://iopscience.iop.org/article/10.1088/1361-6633/adc82e DOI: https://doi.org/10.1088/1361-6633/adc82e

Adame AG, Aguilar J, Ahlen S, Alam S, Alexander DM, Alvarez M, et al; DESI Collaboration. DESI 2024 results: cosmological constraints from baryon acoustic oscillations. Phys Rev D. 2025;112(2):023514. Available from: https://doi.org/10.48550/arXiv.2404.03002

DESI Collaboration. Dark energy evolution. Nat Astron. 2025.

JWST Collaboration. First light results from the James Webb Space Telescope: high-redshift galaxy candidates. Nat Astron. 2025;9:1–15.

Mohr PJ, Newell DB, Taylor BN, Tiesinga E; CODATA. Recommended values of the fundamental physical constants. J Phys Chem Ref Data. 2025;54(2):025002. Available from: https://doi.org/10.1103/RevModPhys.97.025002 DOI: https://doi.org/10.1063/5.0279860

Ali A. Quantum-inspired loss functions for artificial intelligence optimization. Neural Comput. 2024;36(3):512–528.